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Abstract 
And Echo State Neural Network model is created and tested against multiple input signals. The resulting 

network is capable of emulating two distinct figures based on period-changed sinusoids. Various 

parameter scans are performed to optimize the result and minimize the error, producing a network with 

acceptable error margins and promising capabilities. 

Introduction 
We assume the reader has at least a basic familiarity with Echo State Networks (ESN)’s: recurrent 

partially connected networks with a dynamic reservoir and optionally one or more input and output 

nodes. Using such an ESN we attempt to create a network capable of recreating two distinct versions of 

a well defined figure: a sinusoid “8” or “∞”. 

To start we create an echo state network capable of emulating a sinusoid signal to within negligible 

margins of error. Using this network we attempt to add a second output node so the signal can be 

warped in both output dimensions. Then, with two output nodes capable of producing a sinus, we 

attempt to train the frequency of one node independently, producing the desired output. Finally, the 

trained weights are combined to create a single network capable of producing the multiple node output 

desired. 

Methodology 

Creating the Echo State 
A common method to create an echo state, or to be more specific, a dynamic reservoir containing an 

echo state is to use a random sparse connection matrix of N by N nodes, with N being the total amount 

of neurons in the network. This ensures an initial state of random connections with low strengths. 

Input Vector Initialization 
Using a simple formula for the sinus waves of both output vectors and applying this to all steps used in 

the transient, training and test phase, we create a matrix of desired output values of L x T, with L output 

nodes and T total steps. A small amount of noise is added to this signal using a random number 

generator so the network also sees ‘imperfect’ data.  

Driving the Dynamic Reservoir 
To get the dynamic reservoir to recognize the input signal, we train it during a transient period. After 

this period we assume the signal is embedded into the reservoir and we start training the network. 

Using the activation of the network during this training period a connection weight vector can be 

obtained to use for training the output weights.  



Training Output Vectors 
By taking the pseudo inverse of the weight matrix and combining this with the driver signal we create 

output weights for the network. Over time, these should stabilize the network to the desired output 

patterns given an input signal. 

Since the network itself produces a sinusoid output vector, no further transformation is required and we 

can suffice with a linear output function. Alternatively a sigmoid or hyperbolic tangent could be used but 

would require further adjustment to fit the model. 

Result Testing 
Once the network has been trained, a measurement of its accuracy can be made over both the training 

and test period by calculating the difference between desired output as determined during the input 

vector initialization phase and the actual output as produced by the output nodes. Averaging over all 

output nodes gives an estimate of global network error and thus its accuracy. 

Using this error and an automated testing algorithm it is possible to determine the average error for a 

certain configuration over a predetermined number of trials. From this, it is possible to get some idea as 

to how the error relates to specific configurations, and what configuration might result in the smallest 

eventual average error.  

Measures are taken to prevent a ‘wild’ network, which can produce error values in the millions and 

more, from disproportionally affecting the average error for a given parameter value. Instead, these 

results are discarded and the final average error for that parameter value is taken over the remaining 

valid errors. As a result, these might proof less accurate however, yet this is considered an acceptable 

tradeoff. 

Parameter Scanning 
Using the above described algorithms we attempt to find optimal values for the numerous network 

parameters. For each parameter we shortly describe its main function, error plot and chosen optimal 

value. In certain cases this optimal value is randomly chosen when no distinct best value is available – in 

these cases the parameter is assumed not to influence results too greatly and thus the chosen setting is 

as well suited as any other. 

Alpha scan 

The α parameter is a measure for spectral radius. 

Increasing this will increase reservoir activity to a point 

where it eventually can oscillate out of control, whereas 

decreasing this too much may result in a premature 

dampening of the output matrix. Literature indicates 

optimal values can generally be found around α = 0.8. 

As can be seen in figure no clear trend is discernable, 

though it would seem both 0.78 as well as 0.9 would 

Figure 1: Error over alpha 



make good candidates. Since literature suggests an alpha value of 0.8 we choose to use this. 

Node count scan 

An important parameter is the amount of nodes used in 

the dynamic reservoir. In more advanced 

implementations this is not a predetermined amount but 

instead variable, at least effectively variable, with weights 

between unimportant nodes and output nodes nearing 

zero. For a good approximation of the sinusoid we found 

20 nodes suggested by literature, so for a double sinusoid 

we would expect to require at least 40 nodes. 

As the error plot shows this estimate is a fair 

approximation, as error keeps decreasing till well within 

forty-odd nodes. Adding more nodes has little impact on 

the average error, so as optimal node count we chose to use 50 

nodes. The tail of this error plot suggests that beyond 90 nodes the error actually starts to increase 

again, indicating overfitting taking place there. 

Internal Connection Probability Scan 

During initialization of the sparse matrix used to create 

the dynamic reservoir the internal connection probability 

value determines how many nodes are actually 

connected to each other. Lowering this value means 

fewer connections between nodes and less ‘dynamics’ in 

the reservoir, while increasing this value can result in 

different signals influencing each other too much 

resulting in a more generic output signal – which, while 

good for single output networks, is undesirable in our 

multiple-output network. 

Generally this value resides around 0.15, or a 15% chance 

two nodes in the dynamic reservoir are connected. Our error 

plot in figure 3 shows the effect of this value to be chaotic at best, with slight increases at the lower and 

higher end of the chosen range of 5% - 40% probability. A value of 21% internal connection probability 

best seems to fit our current scenario. 

 

 

Figure 2: Error over node count 

Figure 3: Error over internal connection probability 



Output Connection Probability Scan 

The output connection probability determines the 

chance a node in the dynamic reservoir is connected 

to one of the output nodes. As with internal 

connection probability this value is of relatively little 

influence on network performance, with the extremes 

merely meaning the dependence on key-nodes 

increases or decreases and as such the output 

smoothness and ability to generalize changes 

accordingly. 

Normally a value of around 30% is used here, and from 

our error plot it seems if anything can be said that this value 

is also in this scenario a good estimate. With lowest errors somewhere between 0.3 and 0.4 we choose 

our output connection probability to be 35%. 

Input Noise Ratio Scan 

One method to improve a networks ability to 

generalize is to add randomly distributed noise to the 

input vector. Of course with too much noise the 

network might not actually learn the correct pattern, 

and with too little noise the networks ability to 

generalize could be compromised, thus choosing the 

correct noise level can be difficult and varies greatly 

between networks and intended applications. 

For our initial sinusoid a noise level of 10-5 was 

suggested, so we perform a scan over values a tenth 

that to hundred times as much. This gives a range of a factor 

1000, which should clarify whether noise can be of significant influence on network performance. For 

clarity sake the results are printed logistically in figure 5. While infinitesimal values seem to have some 

negative impact on performance, the change for greater noise ratios seems negligible with an optimum 

around 10-5 and a slight increase towards 10-3. We therefore keep the original noise ratio of 10-5. 

 

 

Figure 4: Error over output connection probability 

Figure 5: Error over Noise Ratio 



Model Results 

Network & Dynamic Reservoir Output 

Figure: infinity 

We look at the output over time for the network during a successful run for the ‘infinity’ figure: 

 

As can be seen from the plots the network 

manages to approximate the desired figure 

quite well, though during the first test steps it 

does seem to require some initialization before 

it reaches an output equilibrium. This would 

indicate that, though there might be a problem 

with initial test values, the network learned the 

pattern successfully and attains it as final stable 

position. 

A similar result can be obtained from examining 

the output of the dynamic reservoir during the 

entire training period: it clearly shows the 

reservoir recovering from the transition to 

testing at step 300 and regaining its original 

momentum. 

Additionally we can see the chaotic behavior of 

the reservoir at the very start of the transient 

period around step 0 to 10 – during this period 

the network has not actually achieved a stable echo state and would be unusable it its current form, 

demonstrating the necessity for this transient period. 

 



Figure: eight 

If we switch the periods of both signals the expected output rotates 90˚ to form a figure 8. We give once 

again the output for both the network as well as the dynamic reservoir: 

 

While still a fair approximation, upon closer 

inspection one observes some discrepancies in the 

final network output and the intended figure. We 

assume this is due to interference from one pattern 

on another. One explanation for this might be that 

the order of training changes from slowest first to 

fastest first, and while a fast pattern could fit in a 

slow base pattern without affecting it too much, 

vice versa this might not be the case. Of course this 

could also simply be due to an error in our 

implementation, for a discussion see later on in the 

text. 

No significant change can be seen in the dynamic 

reservoir output: once again we observe chaotic 

behavior at the start and an initial reset at the 

beginning of the test period (step 300) followed by 

retaining the previously established equilibrium 

state. 

 

 

 

 



Conclusion 

Model Performance 
While some discrepancies can be observed in model output, especially for the figure 8 scenario, we 

would argue that overall the network performed well with relatively small errors. Additionally, in a 

single output scenario the network manages to achieve errors as small as 10-11 which in our opinion is 

quite satisfactory. 

Some doubt exists as to the nature of the output ‘reset’ at the start of the testing period: this can be 

most easily be explained by an error in our model, yet it seems of relatively small importance due to the 

networks ability to regain its original dynamic state and still produce valid output.  

Improvement suggestions 
The combining of both output signals during the training phase is, while novel, not the best possible 

solution. It would be better (and probably actually required) to feed the network only one combined 

signal instead of two separate ones and combining the network activity into  a single network capable of 

producing both. Both performance as well as accuracy can be improved upon by remedying this fatal 

flaw in our design, yet how this can be achieved is, at this point, unclear to us.  

While weights are changed according to demand and training signal, one could argue that it might yield 

better results to dynamically add or remove nodes that perform less than average. We feel that a truly 

dynamic reservoir should contain a dynamic node complement as well, for which various pruning 

techniques are available such as genetic algorithms, a complexity penalty, etcetera. 

 

Discussion 

Model Design 
Our original model was based on a single-output node sinusoid emulator. ESN are well suited to imitate 

a sinus, even with few internal nodes. It was a logical step to add another sinus input signal, let the 

network train on this, and combine the results into a single network theoretically capable of emulating 

both learned signals. 

One can (and almost definitely will) argue that this is cheating – the network does not learn two 

combined signals, it learns one signal at the time and creates a combined result that coincidentally 

performs quite well under the circumstances. We would implore the reader to consider the validity of 

this approach: while unconventional, its results are undeniable and its complexity is possibly much 

smaller than a combined signal approach might yield. That being said, yes, we do acknowledge our 

mistake here but are due to various reasons unable to fix it. 


